Msa1 and Msa2 Modulate G1-Specific Transcription to Promote G1 Arrest and the Transition to Quiescence in Budding Yeast

نویسندگان

  • Shawna Miles
  • Matthew W. Croxford
  • Amali P. Abeysinghe
  • Linda L. Breeden
چکیده

Yeast that naturally exhaust their glucose source can enter a quiescent state that is characterized by reduced cell size, and high cell density, stress tolerance and longevity. The transition to quiescence involves highly asymmetric cell divisions, dramatic reprogramming of transcription and global changes in chromatin structure and chromosome topology. Cells enter quiescence from G1 and we find that there is a positive correlation between the length of G1 and the yield of quiescent cells. The Swi4 and Swi6 transcription factors, which form the SBF transcription complex and promote the G1 to S transition in cycling cells, are also critical for the transition to quiescence. Swi6 forms a second complex with Mbp1 (MBF), which is not required for quiescence. These are the functional analogues of the E2F complexes of higher eukaryotes. Loss of the RB analogue, Whi5, and the related protein Srl3/Whi7, delays G1 arrest, but it also delays recovery from quiescence. Two MBF- and SBF-Associated proteins have been identified that have little effect on SBF or MBF activity in cycling cells. We show that these two related proteins, Msa1 and Msa2, are specifically required for the transition to quiescence. Like the E2F complexes that are quiescence-specific, Msa1 and Msa2 are required to repress the transcription of many SBF target genes, including SWI4, the CLN2 cyclin and histones, specifically after glucose is exhausted from the media. They also activate transcription of many MBF target genes. msa1msa2 cells fail to G1 arrest and rapidly lose viability upon glucose exhaustion. msa1msa2 mutants that survive this transition are very large, but they attain the same thermo-tolerance and longevity of wild type quiescent cells. This indicates that Msa1 and Msa2 are required for successful transition to quiescence, but not for the maintenance of that state.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The SBF- and MBF-associated protein Msa1 is required for proper timing of G1-specific transcription in Saccharomyces cerevisiae.

In the budding yeast Saccharomyces cerevisiae, cell cycle initiation is prompted during G(1) phase by Cln3/cyclin-dependent protein kinase-mediated transcriptional activation of G(1)-specific genes. A recent screening performed to reveal novel interactors of SCB-binding factor (SBF) and MCB-binding factor (MBF) identified, in addition to the SBF-specific repressor Whi5 and the MBF-specific core...

متن کامل

Xbp1 Directs Global Repression of Budding Yeast Transcription during the Transition to Quiescence and Is Important for the Longevity and Reversibility of the Quiescent State

Pure populations of quiescent yeast can be obtained from stationary phase cultures that have ceased proliferation after exhausting glucose and other carbon sources from their environment. They are uniformly arrested in the G1 phase of the cell cycle, and display very high thermo-tolerance and longevity. We find that G1 arrest is initiated before all the glucose has been scavenged from the media...

متن کامل

Growth signaling promotes chronological aging in budding yeast by inducing superoxide anions that inhibit quiescence

Inhibition of growth signaling pathways protects against aging and age-related diseases in parallel with reduced oxidative stress. The relationships between growth signaling, oxidative stress and aging remain unclear. Here we report that in Saccharomyces cerevisiae, alterations in growth signaling pathways impact levels of superoxide anions that promote chronological aging and inhibit growth ar...

متن کامل

A Genetic Screen for Saccharomyces cerevisiae Mutants That Fail to Enter Quiescence

Budding yeast begin the transition to quiescence by prolonging G1 and accumulating limited nutrients. They undergo asymmetric cell divisions, slow cellular expansion, acquire significant stress tolerance and construct elaborate cell walls. These morphologic changes give rise to quiescent (Q) cells, which can be distinguished from three other cell types in a stationary phase culture by flow cyto...

متن کامل

Fission yeast pheromone blocks S-phase by inhibiting the G1 cyclin B-p34cdc2 kinase.

Yeast pheromones block cell cycle progression in G1 in order to prepare mating partners for conjugation. We have investigated the mechanism underlying pheromone-induced G1 arrest in the fission yeast Schizosaccharomyces pombe. We find that the G1-specific transcription factor p65cdc10-p72res1/sct1 which controls the expression of S-phase genes is fully activated in pheromone, unlike the analogo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2016